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Abstract

We present automated, real-time models built with machine learning algorithms which use videotapes of subjects’ faces in conjunction

with physiological measurements to predict rated emotion (trained coders’ second-by-second assessments of sadness or amusement).

Input consisted of videotapes of 41 subjects watching emotionally evocative films along with measures of their cardiovascular activity,

somatic activity, and electrodermal responding. We built algorithms based on extracted points from the subjects’ faces as well as their

physiological responses. Strengths of the current approach are (1) we are assessing real behavior of subjects watching emotional videos

instead of actors making facial poses, (2) the training data allow us to predict both emotion type (amusement versus sadness) as well as

the intensity level of each emotion, (3) we provide a direct comparison between person-specific, gender-specific, and general models.

Results demonstrated good fits for the models overall, with better performance for emotion categories than for emotion intensity, for

amusement ratings than sadness ratings, for a full model using both physiological measures and facial tracking than for either cue alone,

and for person-specific models than for gender-specific or general models.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The number of applications in which a user’s face is
tracked by a video camera is growing exponentially.
Cameras are constantly capturing images of a person’s
face—on cell phones, webcams, even in automobiles—
often with the goal of using that facial information as a

clue to understand more about the current state of mind of
the user. For example, many car companies (currently in
Japan and soon in the US and Europe) are installing
cameras in the dashboard with the goal of detecting angry,
drowsy, or drunk drivers. Similarly, advertisers on web
portals are seeking to use facial information to determine
the effect of specific billboards and logos, with the
intention of dynamically changing the appearance of a
website in response to users’ emotions regarding the
advertisements. Moreover, video game companies are
interested in assessing the player’s emotions during game
play to help gauge the success of their products.
There are at least two goals in developing real-time

algorithms to detect facial emotion using recordings of
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individuals’ facial behavior. The first is to assist in the types
of human–computer interaction (HCI) applications de-
scribed above. The second is to advance our theoretical
understanding of emotions and facial expression. By using
learning algorithms to link rich sets of facial anchor points
and physiological responses to emotional responses rated
by trained judges, we can develop accurate models of how
emotions expressed in response to evocative stimuli are
captured via facial expressions and physiological responses.
By examining these algorithms, social scientists who study
emotion will have a powerful tool to advance their
knowledge of human emotion.

2. Related work

2.1. Psychological research on emotion assessment

In the psychological literature, emotion has been defined
as an individual’s response to goal-relevant stimuli that
includes behavioral, physiological, and experiential com-
ponents (Gross and Thompson, 2007). In the present
paper, we focus on the assessment of the first two of these
components. There are at least three main ways in which
psychologists assess facial expressions of emotions (see
Rosenberg and Ekman, 2000, for additional details).

The first approach is to have naı̈ve coders view images or
videotapes, and then make holistic judgments concerning
the degree to which they see emotions on target faces in
those images. While relatively simple and quick to perform,
this technique is limited in that the coders may miss subtle
facial movements, and in that the coding may be biased by
idiosyncratic morphological features of various faces.
Furthermore, this technique does not allow for isolating
exactly which features in the face are responsible for
driving particular emotional expressions.

The second approach is to use componential coding
schemes in which trained coders use a highly regulated
procedural technique to detect facial actions. For example,
the Facial Action Coding System (Ekman and Friesan,
1978) is a comprehensive measurement system that uses
frame-by-frame ratings of anatomically based facial
features (‘‘action units’’). Advantages of this technique
include the richness of the dataset as well as the ability to
uncover novel facial movements and configurations from
data mining the anchor points. The disadvantage of this
system is that the frame-by-frame coding of the points is
extremely laborious.

The third approach is to obtain more direct measures of
muscle movement via facial electromyography (EMG) with
electrodes attached on the skin of the face. While this
allows for sensitive measurement of features, the placement
of the electrodes is difficult and also relatively constraining
for subjects who wear them. This approach is also not
helpful for coding archival footage.

The use of computer vision algorithms promises to be a
solution that maximizes the benefits of the above stated
techniques while reducing many of the costs. In the next

section, we discuss some of the previous models of
detecting facial emotions through computer algorithms.

2.2. Computer vision work

Automatic facial expression recognition and emotion
recognition have been researched extensively. One ap-
proach has been to evaluate intensity of facial action units
(Kimura and Yachida, 1997; Lien et al., 1998; Sayette
et al., 2001). Other experiments, such as Essa and Pentland
(1997), have represented intensity variation in smiling using
optical flow. They measured intensity of face muscles for
discriminating between different types of facial actions.
Similarly, Ehrlich et al. (2000) emphasized the importance
of facial motion instead of the actual face snapshots to
recognize emotion in a network environment. While much
of the work analyzes the front view of the face, Pantic and
Patras (2006) developed a system for automatic recognition
of facial action units and analyzed those units using
temporal models from profile-view face image sequences.
Many types of algorithms have been employed in this

endeavor. For example, Sebe et al. (2002) used video
sequences of faces to show that the Cauchy distribution
performs better than the Gaussian distribution on recog-
nizing emotions. Similarly, Tian et al. (2000) discriminated
intensity variation in eye closure as reliably as did human
coders by using Gabor features and an artificial neural
network. Zhang et al. (1998) showed that a combination of
facial point geometry and texture features, such as Gabor
wavelets, led to more accurate estimation of the current
facial gesture. Moreover, recent work in Bartlett et al.
(2005) has continued to make use of representations based
on a combination of feature geometry and texture features.
A system developed by Lyons (2004) automatically
translated facial gestures to actions using vision techniques.
For a more detailed review of the state of the art of current
systems, see Li and Jain (2005) or Lyons and Bartneck
(2006).
In terms of using the facial tracking data to predict

affective states, the pioneering work of Picard et al. (see
Picard, 1997 for an early example, and Picard and Daily,
2005, for a recent review of this work) has demonstrated
across a number of types of systems that it is possible to
track various aspects of the face, and that by doing so one
can gain insight into the mental state of the person whose
face is being tracked. More recently, el Kaliouby et al.
(el Kaliouby et al., 2003; Michel and el Kaliouby, 2003;
el Kaliouby and Robinson, 2005) have developed a general
computational model for facial affect inference and have
implemented it as a real-time system. This approach used
dynamic Bayesian networks for recognizing six classes of
complex emotions. Their experimental results demon-
strated that it is more efficient to assess a human’s emotion
by looking at the person’s face historically over a two
second window instead of just the current frame. Their
system was designed to classify discrete emotional classes
as opposed to the intensity of each emotion.
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More generally, there has been much work in human–
computer interaction using learning algorithms to predict
human behavior. For example, work by Curhan and
Pentland (2007) utilized automatic feature extraction from
spoken voice to predict quite reliably the outcome of very
complex behavior in terms of performance in negotiations.
The models presented in the current paper will aid
researchers who seek to use real-time computer vision to
predict various types of human behavior by providing
accurate, real-time methods for extracting emotional
information to use as input for those more elaborate
psychological processes.

3. Our approach

There are a number of factors that distinguish the
current approach from previous ones. First, the stimuli
used as input are videotapes of people who were watching
film clips designed to elicit intense emotions. The prob-
ability that we accessed actual emotional behavior is higher
than in studies that used deliberately posed faces (see Nass
and Brave, 2005, for further discussion of this distinction).
One example for the importance of the distinction between
automatically expressed and deliberately posed emotions is
given by Paul Ekman and colleagues. They demonstrated
that only ‘‘Duchenne Smiles’’—automatic smiles involving
crinkling of the eye corners—but not deliberately posed
smiles correlate with other behavioral and physiological
indicators of enjoyment (Ekman et al., 1990). Indeed, there
is a large amount of research attempting to detect
deception through facial and vocal cues by distinguishing
incidental from deliberate behaviors (see Ekman, 2001 for
a review). In sum, some emotional facial expressions are
deliberate, while others are automatic, and the automatic
facial expressions appear to be more informative about
underlying mental states than posed ones.

Second, because in our approach the emotions were
coded second-by-second by trained coders using a linear
scale for two oppositely valenced emotions (amusement
and sadness), we are able to train our learning algorithms
using not just a binary set of data (e.g., sad versus not-sad),
but also a linear set of data spanning a full scale of
emotional intensity. Most psychological models of emotion
allow for the expression of mixed emotional states (e.g.,
Bradley, 2000). Our approach allows us to compare
approaches that only look at binary values—in our case
the two most extreme values on the ends of the linear
scale—to approaches that linearly predict the amount of
amusement and sadness.

Third, given that we collected large amounts of data
from each person (i.e., hundreds of video frames rated
individually for amusement and sadness), we are able to
create three types of models. The first is a ‘‘universal
model’’ which predicts how amused any face is by using
one set of subjects’ faces as training data and another
independent set of subjects’ faces as testing data. This
model would be useful for HCI applications in which lots

of people use the same interface, such as bank automated
teller machines, traffic light cameras, and public computers
with webcams. The second is an ‘‘idiosyncratic model’’
which predicts how amused or sad a given face is by using
training and testing data from the same subject for each
model. This model is useful for HCI applications in which
the same person repeatedly uses the same interface—for
example, driving in an owned car, using the same computer
with a webcam, or any application with a camera in a
private home. The third is a gender-specific model, trained
and tested using only data from subjects of the same
gender. This model is useful for HCI applications targeting
a specific gender—for example make-up advertisements
directed at female consumers, or home repair advertise-
ments targeted at males. It is also theoretically interesting
to compare the idiosyncratic, gender-specific, and universal
models as such a comparison provides valuable informa-
tion to social scientists studying how personal differences
such as gender effect the expression of emotion. Further-
more, although it has previously been shown that the
effectiveness of facial expression recognition systems is
usually affected by the subject’s skin color, facial and scalp
hair, sex, race, and age (Zlochower et al., 1998), the
comparison of the various individual model enables us to
quantitatively evaluate these differences, and better predict
the differences in performance of emotion recognition
systems via personal differences.
Fourth, since our data include physiological responses

(cardiovascular activity, electrodermal responding, and
somatic activity) we are able to quantify the improvement
in the fit of our models by the addition of such features.
One could easily imagine practical contexts in which
physiological data could easily be added, such as in an
automobile in which the interface could capture facial
features from a camera in the dashboard and measure heart
rate from the hands gripping the steering wheel. Compar-
ing fit of the models with and without physiological data
offers new information regarding the effectiveness of
emotion-detection systems with both facial and physiolo-
gical inputs. This enables application designers to assess
the rewards of building physiological measures into their
emotion-detection systems.
Finally, all of the processing (e.g., computer vision

algorithms detecting facial features, physiological mea-
sures, formulas based on the learning algorithms) used in
our study can be utilized in real-time. This is essential for
applications that seek to respond to a user’s emotion in
ways to improve the interaction, for example cars which
seek to avoid accidents for drowsy drivers or advertise-
ments which seek to match their content to the mood of a
person walking by a billboard.
We targeted amusement and sadness in order to sample

positive and negative emotions that recruit behavioral as
well as physiological responses. Amusement rather than
happiness was chosen, because amusement more clearly
allows predictions on which facial behaviors to expect
(Bonanno and Keltner, 2004). Sadness was then chosen as
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the emotion opposite to amusement on the valence
continuum (cf. Watson and Tellegen, 1985). We chose
only these two emotions since increasing the number of
emotions would come at the cost of sacrificing the
reliability of the emotions we induced. Amusement and
sadness (in contrast to anger, fear, or surprise) can be
ethically and reliably induced using films (Philippot, 1993;
Gross and Levenson, 1995), a feature crucial to the present
design as films allow for standardization of moment-by-
moment emotional context across participants across long
enough time periods. The selected films induced dynamic
changes in emotional states over the 9-min period, ranging
from neutral to more intense emotional states. Because
different individuals responded to films with different
degrees of intensity we were able to assess varying levels
of emotional intensity across participants.

4. Data collection

The training data were taken from a study in which 151
Stanford undergraduates watched movies pretested to elicit
amusement and sadness while their faces were videotaped
and their physiological responses were assessed. In the
laboratory session, participants watched a 9-min film clip
that was composed of an amusing, a neutral, a sad, and
another neutral segment (each segment was approximately
2min long). From the larger dataset of 151, we randomly
chose 41 to train and test the learning algorithms. We did
not use all 151 due to the time involved running the models
with such rich datasets. In incremental tests during dataset
construction, we determined that the current sample size
was large enough such that adding additional subjects did
not change the fits of the models.

4.1. Expert ratings of emotions

A total of five trained coders rated facial expressions of
amusement and sadness from the video recordings of
participants’ faces such that each participant’s tape was
rated by two coders (cf. Mauss et al., 2005). Coders used
laboratory software to rate the amount of amusement and
sadness displayed in each second of video. The coding
system was informed by microanalytic analyses of expres-
sive behavior (Ekman and Friesan, 1978). It was anchored
at 0 with neutral (no sign of emotion) and 8 with strong
laughter for amusement and strong sadness expression/
sobbing for sadness. Coders were unaware of other coders’
ratings, of the experimental hypotheses, and of which
stimuli participants were watching. Average inter-rater
reliabilities were satisfactory, with Cronbach’s
alphas ¼ 0.89 (S.D. ¼ 0.13) for amusement behavior and
0.79 (S.D. ¼ 0.11) for sadness behavior. We thus averaged
the coders’ ratings to create one second-by-second amuse-
ment and one second-by-second sadness rating for each
participant. These average ratings of amusement and
sadness were used as criterion in our model.

4.2. Physiological measures

During the experimental session, 15 physiological
measures were monitored at 400Hz using a 12-channel
Grass Model 7 polygraph. Fig. 1 depicts a participant
wearing the measurement sensors. The features included:
heart rate (derived from inter-beat intervals assessed by
placing Beckman miniature electrodes in a bipolar config-
uration on the participant’s chest and calculating the
interval in ms between successive R-waves), systolic blood

pressure (obtained from the third finger of the non-
dominant hand), diastolic blood pressure (obtained from
the third finger of the non-dominant hand), mean arterial

blood pressure (obtained from the third finger of the non-
dominant hand), pre-ejection period (identified as the time
in ms elapsed between the Q point on the ECG wave of the
left ventricle contracting and the B inflection on the ZCG
wave), skin conductance level (derived from a signal using a
constant-voltage device to pass 0.5V between Beckman
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electrodes attached to the palmar surface of the middle
phalanges of the first and second fingers of the non-
dominant hand), finger temperature (measured with a
thermistor attached to the palmar surface of the tip of
the fourth finger), finger pulse amplitude (assessed using a
UFI plethysmograph transducer attached to the tip of the
participant’s second finger), finger pulse transit time

(indexed by the time in ms elapsed between the closest
previous R-wave and the upstroke of the peripheral pulse
at the finger), ear pulse transit time (indexed by the time in
ms elapsed between the closest previous R-wave and the
upstroke of the peripheral pulse at the ear), ear pulse

amplitude (measured with a UFI plethysmograph transdu-
cer attached to the participant’s right ear lobe), composite

of peripheral sympathetic activation (as indexed by a
composite of finger pulse transit time, finger pulse
amplitude, ear pulse transit time, and finger temperature),
composite cardiac activation (as indexed by a composite of
heart rate, finger pulse transit time reversed, finger pulse
amplitude reversed, and ear pulse transit time reversed
standardized within individuals and then averaged), and
somatic activity (assessed through the use of a piezo-electric
device attached to the participant’s chair, which generates
an electrical signal proportional to the participant’s overall
body movement in any direction). For more detailed
descriptions of these measures, see Gross and Levenson
(1995), Mauss et al. (2006).

5. System architecture

The videos of the 41 participants were analyzed at a
resolution of 20 frames per second. The level of amuse-
ment/sadness of every person for every second in the video
was measured via the continuous ratings from 0 (less
amused/sad) to 8 (more amused/sad). The goal was to
predict at every individual second the level of amusement
or sadness for every person based on measurements from
facial tracking output and physiological responses (Fig. 2).

For measuring the facial expression of the person at
every frame, we used the NEVEN Vision Facial Feature
Tracker, a real-time face-tracking solution. This software

uses patented technology to track 22 points on a face at the
fate of 30 frames per second with verification rates of over
95% (Fig. 3).
By plugging our videos into the NEVEN Vision software

using Vizard 2.53, a Python-based virtual environment
development platform, we extracted 53 measurements of
head-centered coordinates of the face at every frame as well
as the confidence rating of the face tracking algorithm. All
the points were measured in a two-dimensional head-
centred coordinate system normalized to the apparent size
of the head on the screen; the coordinates were not affected
by rigid head movements, and scaled well to different
heads. These 53 points included eight points around the
contour of the mouth (three on each lip, and one at each
corner), three points on each eye (including the pupil), two
points on each eyebrow, and four points around the nose.
Pitch, yaw and roll of the face, as well the aspect ratio of
the mouth and each eye, the coordinates of the face in the
image (a loose proxy for posture), and the scale of the face
(which is inversely proportional to the distance from the
face to the camera, another indication of posture) were also
included. Our real-time face-tracking solution required no
training, face-markers, or calibration for individual faces,
and collected data at 30Hz. When the confidence rating of
the face-tracking algorithm fell below 40%, the data were
discarded and the software was told to re-acquire the face
from scratch. We used the software on the pre-recorded
videos because the experiment in which the subjects had
their faces recorded occurred months before the current
study. However, given that the NEVEN vision software
locates the coordinates at 30Hz, the models we developed
would currently work in real-time (Bailenson et al., 2006).
In our final datasets, we included the 53 NEVEN Vision

library facial data points. We excluded the confidence
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Fig. 2. Emotion recognition system architecture.

Fig. 3. The points tracked by NEVEN Vision real-time face tracking.
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rating, as it is not a meaningful predictor a priori of
emotion. We also included six new features which we
created heuristically from linear and non-linear combina-
tions of the NEVEN Vision coordinates: the difference
between the right mouth corner and right eye corner, the
difference left mouth corner and left eye corner, the mouth
height, the mouth width, the upper lip curviness (defined as
the difference between the right upper lip Y and the upper
lip center Y plus the difference between the left upper lip Y
and the upper lip center Y), and the mouth aspect ratio
divided by the product of the left and right eye aspect
ratios. We analyzed the 2 s history for those 59 features,
computing the averages, the velocities, and the variances
for each one of them. This totaled to 236 facial features (59
instantaneous, 59 averaged positions, 59 averaged velo-
cities, 59 averaged variances) used as inputs to the models.
Finally, we added the 15 physiological and somatic
measures utilized by Mauss et al. (2006). So in total, there
were 251 features used (236 facial features, 15 physiological
features). A complete list of these features can be found in
Appendix A.

6. Relevant feature extraction

We applied Chi-square feature selection (which evaluates
the contribution of each feature by computing the value of
the Chi-squared statistic with respect to the emotion
ratings) using the freely distributed machine learning
software package Waikato Environment for Knowledge
Analysis (WEKA; Witten and Fank, 2005) to find the most
relevant features for the amusement dataset. For this
experiment, we processed 19,625 instances and we dis-
cretized the expert’s ratings into two classes (amused and
neutral) where each rating above 3 is considered to be
amused and each rating below 0.5 is considered as neutral.
We repeated the same methodology for finding the most
relevant features for the sadness dataset. The top 20 results
are shown in Tables 1 and 2. For amusement, the facial
characteristics were the most informative (compared to the
physiological measures) according to Chi-square, with only
two of the physiological features appearing in the top 20.
In contrast, for predicting sadness the physiological
features seemed to play much more of a role, with 6 out
of the top 20 features being physiological. This would
indicate that the facial features by themselves are not as
strong an indicator of sadness as the physiological
characteristics. It is important to note that while the Chi-
square analysis is important to understand the features
which contribute most to the model fit, we used all facial
and physiological features when building our models.

7. Predicting emotion intensity

We began with the more challenging task of assessing
emotion intensity before turning to the more commonly
reported task of classifying emotion. Research by Schiano
et al. (2004) has demonstrated that people perceive

emotions of others in a continuous fashion, and that
merely representing emotions in a binary (on/off) manner
is problematic. Consequently, we used linear regression
and neural networks for predicting experts’ ratings in a
continuous manner for every second in the face video.
We used the WEKA software package linear regression

function using the Akaike criterion for model selection and
used no attribute selection. The linear neural nets were
Multilayer Perceptrons configured to have two hidden
layers. Two-fold cross-validation was performed on each
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Table 1

Chi-square values for top 20 features in amusement analysis

Chi-square

value

Features from amusement analysis

5833.16 Average difference right mouth corner eye corner

5402.68 Average difference left mouth corner eye corner

5392.56 Difference right mouth corner eye corner

5285.98 Average face left mouth corner Y

5043.99 Difference left mouth corner eye corner

4971.89 Face left mouth corner Y

4631.21 Somatic activity

4449.13 Average mouth aspect ratio, divided with eyes aspect

ratio

4407.18 Average face right mouth corner Y

4233.76 Face right mouth corner Y

4198.46 Average upper lip curviness

3944.40 Finger temperature

3868.17 Mouth aspect ratio, divided with eyes aspect ratio

3710.65 Upper lip curviness

3635.23 Average face left upper lip Y

3600.06 Average mouth aspect ratio

3581.85 Average face right upper lip Y

3348.80 Left upper lip Y

3314.28 Average face left nostril Y

3241.55 Mouth aspect ratio

Table 2

Chi-square values for top 20 features in sadness analysis

Chi-square value Features from sadness analysis

5882.53 Finger temperature

4903.57 Skin conductance level

3391.84 Average face Y

3356.33 Average face X

3314.70 Face X

3282.54 Face Y

2601.23 Average Face Scale

2321.38 Average Face Euler Y

2152.49 Average upper lip curviness

2066.28 Face Scale

2031.30 Face Euler Y

1995.66 Heart rate

1975.78 Average face left nostril Y

1930.09 Ear pulse transit time

1802.30 Average face left mouth corner Y

1743.33 Average difference left mouth corner eye corner

1657.78 Face left nostril Y

1656.34 Average face nose tip Y

1622.59 Finger pulse transit time

1615.12 Ear pulse amplitude

J.N. Bailenson et al. / Int. J. Human-Computer Studies 66 (2008) 303–317308
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dataset using two non-overlapping sets of subjects. We
performed separate tests for both sadness and amusement,
using face video alone, physiological features alone, as well
as face video in conjunction with the physiological
measures to predict the expert ratings. All classifiers were
trained and tested on the entire nine minutes of face video
data. Our intention in doing so was to demonstrate how
effective a system predicting emotion intensity just from a
camera could be and to allow application designers to
assess the rewards of building in physiological measures.
The results are shown in Table 3.

As can be seen, the classifiers using only the facial
features performed substantially better than the classifiers
using only the physiological features, having correlation
coefficients on average nearly 20% higher. Yet combining
the two sets of data yielded the best results; with both facial
and physiological data included the correlation coefficients
of the linear regressions increased by 5% over the next best
model in the amusement dataset and by 7% in the sadness
dataset, and the neural networks performed slightly better
as well.

Table 3 also demonstrates that predicting the intensity of
sadness is not as easy as predicting the intensity of
amusement. The correlation coefficients of the sadness
neural nets were consistently 20–40% lower than those for
the amusement classifiers. One possible explanation for the
discrepancies between the models’ performance on amuse-
ment in sadness, however, is that amusement dataset had a
mean rating of 0.876 (S.D. ¼ 1.50) while the sadness
dataset had mean rating of 0.555 (S.D. ¼ 0.73). This
difference was significant in a paired t-test, t(41) ¼ 1.23,
po0.05, and could partly account for the lower perfor-
mance of the sadness classifiers; given the lower frequency
and intensity of the rated sadness in our subject pool, the
models may have had more difficulty in detecting sadness.

8. Emotion classification

The previous section presented models predicting linear
amounts of amusement and sadness. This is unique because

most work predicting facial expressions of emotion has not
utilized a training set rich enough to allow such a fine-
grained analysis. However, in order to compare the current
work to previous models, which often presented much
higher statistical fits than those we presented above with
the linear intensity levels of emotion, we processed our
dataset to discretize the expert ratings for amusement and
sadness. In the amusement datasets all the expert ratings
less than or equal to 0.5 were set to neutral, and ratings of 3
or higher were discretized to become amused. In the
sadness datasets all the expert ratings less than or equal to
0.5 were discretized to become neutral, and ratings of 1.5 or
higher were discretized to become sad. All the other
instances (intermediate ratings) were discarded in these new
datasets. Other threshold values (e.g., everything below 1.0
being neutral, etc.) were experimented with, but the
thresholds of 0.5 and 3 for amusement and 0.5 and 1.5
for sadness yielded the best fits in our models. The
percentage of amused instances in the final amused dataset
was 15.2% and the percentage of sad instances in the final
sad dataset was 23.9%. We applied a Support Vector
Machine classifier with a linear kernel and a Logitboost
with a decision stump weak classifier using 40 iterations
(Freund and Schapire, 1996; Friedman et al., 2000) to each
dataset using the WEKA machine learning software
package (Witten and Fank, 2005). As in the linear analyses,
we split the data into two non-overlapping datasets and
performed a two-fold cross-validation on all our classifiers.
In all the experiments we conducted, we calculated the

precision, the recall and the F1 measure, which is defined as
the harmonic mean between the precision and the recall.
For a multi-class classification problem with classes Ai,
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Table 3

Linear classification results for all-subject datasets

Category Regression type Emotion Correlation

coefficient

Mean absolute

error

Mean squared

error

Face Linear regression Amusement 0.53 1.02 1.44

Face Linear regression Sadness 0.23 0.62 0.79

Face Neural network Amusement 0.58 0.99 1.51

Face Neural network Sadness 0.20 0.57 0.80

Face and physio Linear regression Amusement 0.58 1.05 1.45

Face and physio Linear regression Sadness 0.30 0.61 0.79

Face and physio Neural network Amusement 0.58 0.90 1.38

Face and physio Neural network Sadness 0.21 0.61 0.85

Physio Linear regression Amusement 0.48 1.03 1.34

Physio Linear regression Sadness 0.08 0.68 0.93

Physio Neural network Amusement 0.37 1.91 2.27

Physio Neural network Sadness 0.08 0.68 0.93

F1 =
Precision + Recall

2 * Precision * Recall

Precision =
Ci + C'

i

Ci

Ni

Ci
, Recall =

Fig. 4. The formulas for precision, recall, and F1.
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i ¼ 1,y, M and each class Ai having a total of Ni instances
in the dataset, respectively, if the classifier predicts
correctly Ci instances for Ai and predicts C0i instances to
be in Ai where in fact those belong to other classes
(misclassifies them), then the former measures are defined
as following (Fig. 4):

Precision ¼
Ci

Ci þ C0i
; Recall ¼

Ci

Ni

F1 ¼
2� Precision�Recall

PrecisionþRecall

Maximizing precision or recall individually does not
result in a perfect classifier; F1 gives the optimal accuracy
score by relating precision to recall. The results of our
analyses are shown in Table 4.

In these analyses both classifiers performed equally as
well, with precisions nearing 70% for amusement, 50% for
sadness, and 94% for neutral in the face and physiological
datasets, a substantial improvement over the precisions of
the linear classifiers. We noted too, that the addition of the
physiological features offered much greater improvement
in the discrete classifiers than in the linear classifiers. The
addition of physiological features increased the SVM
sadness precision by over 15% and the LogitBoost
amusement precision by 9%. Also, just as in the linear
analyses, the precisions of the sadness classifiers were
consistently over 15% worse than the precisions of the
amusement classifiers.

9. Experimental results within subjects

In addition to creating general models applicable to any
subject, we ran experiments in which we trained and tested
individual models specifically for each one of the 41
subjects. We expected the linear prediction and the
classification accuracy to be better within the same subject,
since the models are optimized for the facial characteristics

of each specific subject as well as his or her levels of
expressivity.

9.1. Predicting continuous ratings within subjects

We built 41 different Multilayer Perceptron neural
nets with two hidden layers and individualized them by
training and testing them only within the same subject.
We chose Multilayer Perceptron neural nets over regres-
sion formulas as the previous analyses indicated better
fits with the neural nets. For each subject, we used two-
fold cross-validation for training and testing. In Table 5,
we present the average of the results of the 41 neural
nets.
Using these idiosyncratic methods of building specialized

models for particular subjects, we noted a number of
important trends.
First, building specialized models for each subject

significantly increased the prediction accuracy. With
sadness in particular, we saw an improvement in the
correlation coefficient of more than 50%. This is especially
remarkable given that the input set was reduced 20-fold;
the all-subject training sets had on average 12,184 instances
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Table 4

Discrete classification results for all-subject datasets

Category Classifier Emotion Neutral precision Emotion

precision

Neutral F1

measure

Emotion F1

measure

Face SVMs Amusement 0.93 0.64 0.93 0.62

Face SVMs Sadness 0.78 0.35 0.82 0.20

Face LogitBoost Amusement 0.93 0.66 0.93 0.63

Face LogitBoost Sadness 0.78 0.31 0.79 0.26

Face and physio SVMs Amusement 0.95 0.63 0.93 0.66

Face and physio SVMs Sadness 0.81 0.51 0.84 0.37

Face and physio LogitBoost Amusement 0.94 0.75 0.95 0.69

Face and physio LogitBoost Sadness 0.79 0.36 0.79 0.28

Physio SVMs Amusement 0.88 0.77 0.93 0.41

Physio SVMs Sadness 0.78 0.32 0.79 0.25

Physio LogitBoost Amusement 0.90 0.49 0.91 0.49

Physio LogitBoost Sadness 0.78 0.43 0.76 0.24

Table 5

Linear classification results for individual subjects (average results)

Categories Emotion Correlation

coefficient

(average)

Mean

absolute

error

(average)

Mean

squared

error

(average)

Face only Amusement 0.85 0.38 0.64

Face only Sadness 0.73 0.20 0.33

Face and

physio

Amusement 0.90 0.29 0.52

Face and

physio

Sadness 0.83 0.15 0.26

Physio only Amusement 0.84 0.48 0.69

Physio only Sadness 0.83 0.16 0.24
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while the individual training sets had on average only 595
instances. So even though the within-subject models only
had about 300 trials to train on, the fits remained quite
high.

Second, like the universal models, using physiological
measures improved the fit for all models. Interestingly, the
classifier for sadness using only physiological data slightly
out-performed the classifier using only facial features. This
supports our earlier findings that physiological features
seem to be more important in the detection of sadness
compared to amusement.

The mean absolute error and the mean squared error
were not comparable between the amusement and sadness
cases, however since mean ratings of the two datasets were
unequal; the majority of expert ratings on sadness did not
go beyond the scale of 3.5, while the amusement ratings
fluctuated in scale from 0 to 7.

9.2. Classification results within subjects

We performed a similar analysis by building an
individual Support Vector Machine classifier with a linear
kernel for each one of the 41 subjects. In Table 6 we present
those results.

As can be seen by comparing the prediction success in
Table 6 to all other tables in the paper, the discrete
classifiers designed to predict emotion within subjects
performed by far the best, with average accuracies nearing
95%.

10. Experimental results by gender

Given that previous research has identified systematic
gender differences in facial expressions of emotion, with
women appearing somewhat more accurate in expressing
some emotions than men (see Hall, 1984, for a review;
Timmers et al., 1998; Kring, 2000), we separated our
dataset into two parts, with one part containing only
male subjects (n ¼ 17) and the other part only female
subjects (n ¼ 24). We created individual classifiers for
each of the datasets in order to compare their perfor-
mance. We expected the linear prediction and the
classification accuracy to be better for the female classifiers

given the greater facial expressiveness of women. We also
performed relevant feature extraction on each of the
datasets to examine any differences in the most informative
features between the two genders.

10.1. Relevant feature extraction within gender

We applied Chi-square feature selection using the
WEKA machine learning software package (Witten
and Fank, 2005) to find the most relevant features for
both the male and female amusement datasets. For this
experiment, we discretized the expert’s ratings into two
classes (amused and neutral) where each rating above 3
was considered to be amused and each rating below 0.5
was considered as neutral. We repeated the same metho-
dology for finding the most relevant features for the
male and female sadness datasets. The top 20 results for
each gender are shown in Tables 7 and 8. We observed
that in the male dataset the physiological measures were
more informative according to Chi-square than for
females. This is especially noticeable in the sadness analysis
where 8 of the top 20 male features are physiological
whereas only 3 of the top 20 female characteristics are
physiological.

10.2. Predicting continuous ratings within gender

We created separate Multilayer Perceptron neural
network models with two hidden layers for each gender
and measured the correlation coefficient, mean absolute
error, and root mean squared error. As in previous
analyses the subjects were split into two non-over-
lapping datasets in order to perform two-fold cross-
validation on all classifiers. The results are shown in
Table 9.
As can be seen, the female classifiers generally yielded a

greater correlation coefficient, suggesting that our models
more accurately predict emotions in women than in men.
Also, adding the physiological features increased the
correlation coefficient in males by almost 20%, whereas it
only increased the correlation coefficient in females by
10%. This indicates that physiological features may be
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Table 6

Discrete classification results for individual subjects (average results)

Categories Emotion Neutral accuracy

(average)

Emotion accuracy

(average)

Neutral F1 measure

(average)

Emotion F1 measure

(average)

Face only Amusement 0.99 0.93 0.99 0.90

Face only Sadness 0.97 0.89 0.97 0.86

Face and physio Amusement 0.99 0.94 0.99 0.92

Face and physio Sadness 0.99 0.98 0.99 0.95

Physio only Amusement 0.96 0.82 0.97 0.73

Physio only Sadness 0.95 0.82 0.95 0.77
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more important in detecting male emotional responses than
female responses.

10.3. Classification results by gender

We performed a similar analysis by building an indivi-
dual Support Vector Machine classifier with a linear kernel
for both males and females. As in other classifications,

two-fold cross-validation was used. We present those
results in Table 10.
Again we see a significantly higher accuracy in our

female models over our male models. Interestingly, the
only classifier that performed better in the male dataset
than the female dataset was the sadness classifier using only
physiological data. Also, when adding the physiological
data to the facial data we only saw improvements in
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Table 7

Chi-square values for top 20 features in male and female amusement analyses

Chi-square Features from male amusement analysis Chi-square Features from female amusement analysis

2390.29 Average difference left mouth corner eye corner 3363.06 Average left mouth corner Y

2192.56 Difference left mouth corner eye corner 3236.11 Average mouth aspect ratio divided with eyes aspect ratio

2173.04 Average left mouth corner Y 3209.90 Finger temperature

2149.07 Average difference right mouth corner eye corner 3196.37 Average difference left mouth corner eye corner

2107.02 Somatic activity 3137.08 Left mouth corner Y

1996.80 Left mouth corner Y 3115.47 Somatic activity

1925.40 Skin conductance level 3099.96 Average right mouth corner Y

1787.31 Average upper lip curviness 2974.77 Right mouth corner Y

1785.56 Difference right mouth corner eye corner 2966.45 Difference left mouth corner eye corner

1533.58 Finger temperature 2890.10 Average left upper lip Y

1454.53 Upper lip curviness 2823.22 Average mouth aspect ratio

1369.33 Average right mouth corner Y 2789.79 Average right upper lip Y

1347.73 Average left nostril Y 2659.73 Average mouth height

1346.67 Average left upper lip Y 2610.82 Mouth aspect ratio divided with eyes aspect ratio

1240.03 Composite of cardiac activation 2562.26 Left upper lip Y

1217.84 Right mouth corner Y 2526.48 Mouth aspect ratio

1203.93 Left upper lip Y 2470.99 Average upper lip curviness

1174.46 Mouth aspect ratio divided with eyes aspect ratio 2442.35 Mouth height

1096.93 Average right upper lip Y 2387.87 Right upper lip Y

1095.57 Left nostril Y 2333.37 Skin conductance level

Table 8

Chi-square values for top 20 features in male and female sadness analyses

Chi-square Features from male sadness analysis Chi-square Features from female sadness analysis

3907.62 Skin conductance level 3363.06 Average left mouth corner Y

3412.75 Finger temperature 3236.11 Average mouth aspect ratio divided with eyes aspect ratio

2372.60 Average X position 3209.90 Finger temperature

2325.77 X position 3196.37 Average difference left mouth corner eye corner

2169.87 Average Euler Y 3137.08 Left mouth corner Y

2148.95 Y position 3115.47 Somatic activity

2114.66 Average scale 3099.96 Average right mouth corner Y

2065.24 Average Y position 2974.77 Right mouth corner Y

1984.77 Euler Y 2966.45 Difference left mouth corner eye corner

1939.58 Scale 2890.10 Average left upper lip Y

1779.59 Heart rate 2823.22 Average mouth aspect ratio

1691.42 Pre-ejection period 2789.77 Average right upper lip Y

1682.98 Average left pupil X 2659.73 Average mouth height

1646.60 Ear pulse transit time 2610.82 Mouth aspect ratio divided with eyes aspect ratio

1523.33 Ear pulse amplitude 2562.26 Left upper lip Y

1467.22 Diastolic blood pressure 2526.48 Mouth aspect ratio

1448.72 Average upper lip curviness 2470.99 Average upper lip curviness

1380.15 Average left nostril Y 2442.35 Mouth height

1347.30 Finger pulse transit time 2387.87 Right upper lip Y

1339.80 Average left eye aspect ratio 2333.37 Skin conductance level
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performance in the male classifiers. These results support
the findings of the Chi-square analysis, suggesting
physiological data are more important for males than
females.

11. Conclusion and future work

We have presented a real-time system for emotion
recognition and showed that this system is accurate and
easy to implement. The present study is unique for a
number of reasons, perhaps most notably because of the
unusually rich data set. A relatively large number of
subjects watched videos designed to make them feel
amused or sad while having their facial and physiological
responses recorded, and we then produced second-by-
second ratings of the intensity with which they expressed
amusement and sadness using trained coders. By having
this level of detail in both input and output, we were able to
make a number of important advances in our learning
algorithms.

11.1. Summary of findings

First, we demonstrated the ability to find good statistical
fits on algorithms to predict the emotion from the natural
facial expressions of everyday people, rather than from
discrete and deliberately created facial expressions of
trained actors, as in many previous studies. This is
important, because people in their day-to-day lives may
not produce extreme facial configurations such as those
displayed by actors used in typical experimental stimuli.
Consequently, previous work may be overestimating the
utility of emotion prediction based on the novelty of the
stimulus set.
Second, in the current study, we demonstrated that

amusement is more easily detected than sadness, per-
haps due to the difficulty in eliciting true sadness. In
our dataset, facial expressions of people watching sad
movies and receiving high sadness ratings tended to not
have the stereotypical ‘‘long face’’, but were predomi-
nantly characterized by a lack of movement or any
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Table 9

Linear classification results for gender-specific datasets

Categories Emotion Gender Correlation

coefficient (average)

Mean absolute error

(average)

Mean squared error

(average)

Face only Amusement Male 0.25 1.40 1.94

Face only Amusement Female 0.63 0.94 1.43

Face only Sadness Male 0.23 0.61 0.82

Face only Sadness Female 0.33 0.56 0.79

Face and physio Amusement Male 0.45 0.92 1.48

Face and physio Amusement Female 0.73 0.77 1.17

Face and physio Sadness Male 0.20 0.57 0.78

Face and physio Sadness Female 0.04 0.65 0.82

Physio only Amusement Male 0.24 2.26 2.71

Physio only Amusement Female 0.20 2.06 2.40

Physio only Sadness Male 0.02 0.71 0.97

Physio only Sadness Female 0.03 0.78 1.01

Table 10

Discrete classification results for gender-specific datasets

Categories Emotion Gender Neutral accuracy

(average)

Emotion accuracy

(average)

Neutral F1

measure (average)

Emotion F1

measure (average)

Face only Amusement Male 0.93 0.53 0.93 0.62

Face only Amusement Female 0.94 0.69 0.93 0.68

Face only Sadness Male 0.77 0.15 0.84 0.46

Face only Sadness Female 0.80 0.39 0.80 0.39

Face and physio Amusement Male 0.93 0.28 0.85 0.34

Face and physio Amusement Female 0.95 0.82 0.96 0.79

Face and physio Sadness Male 0.85 0.38 0.85 0.38

Face and physio Sadness Female 0.84 0.42 0.84 0.47

Physio only Amusement Male 0.90 0.43 0.90 0.25

Physio only Amusement Female 0.89 0.62 0.88 0.41

Physio only Sadness Male 0.87 0.29 0.87 0.34

Physio only Sadness Female 0.71 0.19 0.56 0.22
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expressivity at all. Consequently, we are demonstrat-
ing the importance of examining people experiencing
emotions in a naturalistic element. Previous work has
also demonstrated that sadness is a difficult emotion to
capture using analysis of facial feature points (Deng et al.,
2006).

Third, we provided evidence that applications for
which a single user occupies an interface over time,
models tailored to that user, show significant advances
over more general models. While in many ways this is
intuitive, quantifying the exact level of improvement is
an important first step in designing these systems.
Specifically with categorizing emotions, the tailored in-
dividual models performed extremely well compared to the
other models.

Fourth, we have shown that both amusement and
sadness are more easily detected in female subjects
than in male subjects. This finding is consistent with the
research done by Hall (1984) suggesting that women
are more facially expressive than men, and provides
new quantitative data for social scientists studying the
differences in emotional response among individuals of
opposite gender.

Fifth, we have demonstrated that by incorporating
measures of physiological responding into our model, we
get more accurate predictions than when just using the
face. Indeed, when we analyze physiological features as the
sole inputs to the model, the fit is often extremely high at
predicting the coded emotion ratings of the face. Such
measurements can be used in real systems with relatively
easy installments of sensors (e.g., on a person’s chair or on
the steering wheel of a car). In fact, the Chi-square analysis
indicates that some of the physiological levels in the
detection of sadness outperformed facial tracking, espe-
cially for males. Given that real-time computer vision
algorithms are not yet as reliable as physiological
measurement techniques in terms of consistent perfor-
mance, augmenting facial tracking with physiological data
may be crucial.

11.2. Limitations and future work

Of course there are a number of limitations to the
current work. First, our models’ accuracy is closely related
to the quality of the vision library that we are using
as well as the accuracy of our physiological measures.
As these tools improve, our system will become much
more useful. Moreover, while the psychologists trained
to code amusement and sadness demonstrated high
inter-coder reliability, it could be the case that their
ratings were not actually picking up the ‘‘true emo-
tion’’ but were picking up on other types of behavioral
artifacts. Our model is only as good as the input and
output used to train, and while we are confident that
this dataset is more robust than most that have been
used previously, there are many ways to improve our
measurements.

Second, we only examined two emotions, while most
models posit there are many more than two emotions
(Ekman and Friesan, 1978). In pilot testing, we examined
the videos of subjects and determined that there were very
few instances of all seven emotions, such as fear, disgust,
and surprise. Consequently, we decided to focus on
creating robust models which were able to capture the
two oppositely valenced emotions which occurred most
frequently in our dataset. We also decided to begin with the
most conservative models, which were binary comparisons
between amused and neutral and sad and neutral rather
than a general comparison of all emotions. We acknowl-
edge, however, that these decisions limit the scope of our
experiment. In future work, we can expand the models to
include other emotions and to compare emotions directly.
Third, our study was based upon coders’ labels of

subjects’ emotions. Thus, although we are confident in the
validity of our coders’ ratings based upon their high inter-
coder reliability, we cannot claim to be detecting the actual
expression of the emotions sadness and amusement; rather,
we can only claim to be detecting the expressions of sadness
and amusement as evaluated by coders. A possibility for
future work would be to repeat the study using reports of
emotion from the subjects themselves rather than coders’
ratings.
Fourth, our some of the algorithms in our study depend

upon physiological features collected through use of
electrodes and transducers which may be too intrusive for
some applications. In future work alternate ways of
obtaining physiological data could be explored.
Finally, all of our results are tied to the specific learning

algorithms we utilized as well as to the ways in which we
divided the data. The fact that we discarded any data points
rated between 0.5 and 3 in our discrete amusement datasets
and between 0.5 and 1.5 in our discrete sad datasets makes
our models more applicable to subjects with greater facial
motion since subjects whose expressions tend to fall in the
intermediate range tend to be less represented in the data. It
may be the case that different techniques of modeling would
produce different patterns of results.
In the future, we plan to use our emotion-recognizer

model for analyzing data from other studies; for example,
assessing how emotion is related to driving safety and how
emotions can affect social interaction during a negotiation
setting.
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Appendix A. Facial and physiological features

Full list of the 53 facial features from NEVEN Vision, 6 heuristically created facial metafeatures, and 15 physiological
features used as inputs for the learning algorithms.

Facial features Physiological features

1 X position 28 Left mouth corner X 1 Composite of cardiac activation
2 Y position 29 Left mouth corner Y 2 Skin conductance level
3 Scale 30 Left outer eye corner X 3 Finger temperature
4 Euler X 31 Left outer eye corner Y 4 Systolic blood pressure
5 Euler Y 32 Left inner eye corner X 5 Composite of peripheral sympathetic activation
6 Euler Z 33 Left inner eye corner Y 6 Finger pulse transit time
7 Left eye aspect ratio 34 Right inner eye corner X 7 Ear pulse transit time
8 Right eye aspect ratio 35 Right inner eye corner Y 8 Pre-ejection period
9 Mouth aspect ratio 36 Right outer eye corner X 9 Finger pulse amplitude

10 Right pupil X 37 Right outer eye corner Y 10 Mean arterial blood pressure
11 Right pupil Y 38 Right upper lip X 11 Heart rate
12 Left pupil X 39 Right upper lip Y 12 Ear pulse transit time
13 Left pupil Y 40 Left upper lip X 13 Ear pulse amplitude
14 Right inner eye brow X 41 Left upper lip Y 14 Diastolic blood pressure
15 Right inner eye brow Y 42 Right lower lip X 15 Somatic activity
16 Left inner eye brow X 43 Right lower lip Y
17 Left inner eye brow Y 44 Left lower lip X
18 Nose root X 45 Left lower lip Y
19 Nose root Y 46 Right eye brow center X
20 Nose tip X 47 Right eye brow center Y
21 Nose tip Y 48 Left eye brow center X
22 Upper lip center X 49 Left eye brow center Y
23 Upper lip center Y 50 Right nostril X
24 Lower lip center X 51 Right nostril Y
25 Lower lip center Y 52 Left nostril X
26 Right mouth corner X 53 Left nostril Y
27 Right mouth corner Y

Metafeatures

1 Difference right mouth corner eye corner (right outer eye corner Y-right mouth corner Y)
2 Mouth height (lower lip center Y-upper lip center Y)
3 Difference left mouth corner eye corner (left outer eye corner Y-left mouth corner Y)
4 Mouth width (left mouth corner X—right mouth corner X)
5 Upper lip curviness ((upper lip center Y-right mouth corner Y)+(upper lip center Y-left mouth corner Y))
6 Mouth aspect ratio, divided with eyes aspect ratio (mouth aspect ratio/(right eye aspect ratio� left eye aspect ratio))

Appendix B. Software packages

Software
package

Description Developer Latest release OS License Website

NEVEN Vision Real-time face-tracking
solution

Nevenvision,
Inc.

NEVEN
Vision 1.0

Cross-
platform

Google,
Inc.

www.nevenvision.com

Vizard 2.53 VR
Toolkit

Platform for developing 3-D
virtual reality worlds

WorldViz,
Inc.

Vizard 3.0 Cross-
platform

WorldViz,
Inc.

http://
www.worldviz.com/
products/vizard/
index.html
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Waikato
Environment for
Knowledge
Analysis
(WEKA)

Open source collection of
visualization tools and
algorithms for data analysis
and predictive modeling

University
of Waikato

WEKA 3.5.6
(developer)
WEKA 3.4.11
(book)

Cross-
platform

GPL http://
www.cs.waikato.ac.nz/
�ml/weka/
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